Hướng dẫn cách tính đúng dành cho sinh viên phần 4 ppsx

7 472 0
Hướng dẫn cách tính đúng dành cho sinh viên phần 4 ppsx

Đang tải... (xem toàn văn)

Thông tin tài liệu

22 f’(x) = 3x 2 + 1 > 0 ∀x ∞ − = ∞−→ )x(flim n , ∞ + = ∞+→ )x(flim n Phương trình trên có 1 nghiệm duy nhất f(1)* f(2) = (-3)*5 < 0 Vậy phương trình có 1 nghiệm duy nhất x ∈ (1, 2) - Chính xác hoá nghiệm: f’’(x) = 6x > 0 ∀x ∈ (1, 2) f’(x) > 0 ∀x Thoả mãn điều kiện hội tụ Furiê, áp dụng phương pháp tiếp tuyến Chọn với x 0 = 2 ( vì f(2). f’’(2) > 0) x f(x)/f’(x) 2 0.385 1.615 0.094 1.521 0.005 1.516 0.000 1.516 Vậy nghiệm x ≈ 1.516 c. Thuật toán - Khai báo hàm f(x), fdh(x) - Nhập x - Lặp y= x x = y – f(y)/fdh(y) trong khi ⏐x - y⏐> ε - Xuất nghiệm: x (hoặc y) 4.4.4. Phương pháp dây cung a. Ý tưởng Giả sử [a, b] là khoảng nghiệm phương trình f(x)=0. Gọi A, B là 2 điểm trên đồ thị f(x) có hoành độ tương ứng là a, b. Phương trình đường thẳng qua 2 điểm A(a,f(a)), B(b, f(b)) có dạng: ab ax )a(f)b(f )a(fy − − = − − 23 Dây cung AB cắt trục x tại điểm có toạ độ (x 1 , 0) Do đó: ab ax )a(f)b(f )a(f0 1 − − = − − )a(f)b(f )a(f)ab( ax 1 − − −= Nếu f(a)*f(x 1 ) <0, thay b=x 1 ta có khoảng nghiệm mới là (a, x 1 ) Nếu f(b)*f(x 1 ) <0, thay a=x 1 ta có khoảng nghiệm mới là (x 1 , b) Tiếp tục áp dụng phương pháp dây cung vào khoảng nghiệm mới ta được giá trị x 2 . Lại tiếp tục như thế ta nhận được các giá trị x 3 , x 4 , … càng tiến gần với giá trị nghiệm phương trình. b. Ý nghĩa hình học Ví dụ 9. Giải phương trình x 3 + x - 5 = 0 bằng phương pháp dây cung Giải: - Tách nghiệm: Phương trình có 1 nghiệm x∈(1, 2) - Chính xác hoá nghiệm: f(1) = -3 < 0, f(2) = 5 > 0 x y 0 a x 2 x 1 b B C D A 24 Bảng kết quả: a b x f(x) 1 1.333 1.379 1.385 1.386 2 1.333 1.379 1.385 1.386 1.386 -0.447 -0.020 -0.003 -0.000 Vậy nghiệm phương trình: x ≈1.386 c. Thuật toán - Khai báo hàm f(x) - Nhập a, b - Tính x = a – (b-a)f(a) / (f(b)-f(a)) - Nếu f(x)*f(a) <0 Lặp b = x x = a – (b-a)f(a) / (f(b)-f(a)) trong khi ⏐x - b⏐> ε Ngược lại Lặp a = x x = a – (b-a)f(a) / (f(b)-f(a)) trong khi ⏐x - a⏐> ε - Xuất nghiệm: x 25 BÀI TẬP 1. Tìm nghiệm gần đúng các phương trình: a. x 3 – x + 5 = 0 b. x 3 – x – 1 = 0 c. sinx –x + 1/4 = 0 d. x 4 – 4x – 1= 0 bằng phương pháp chia đôi với sai số không quá 10 -3 2. Tìm nghiệm gần đúng các phương trình: a. x 3 – x + 5 = 0 b. x 4 – 4x – 1 = 0 bằng phương pháp dây cung với sai số không quá 10 -2 3. Tìm nghiệm gần đúng các phương trình: a. e x – 10x + 7 = 0 b. x 3 + x – 5 = 0 bằng phương pháp tiếp tuyến với sai số không quá 10 -3 4. Dùng phương pháp lặp tìm nghiệm dương cho phương trình x 3 – x – 1000 = 0 với sai số không quá 10 -3 5. Tìm nghiệm dương cho phương trình: x 3 + x 2 –2x – 2 = 0 6. Tìm nghiệm âm cho phương trình: x 4 - 3x 2 + 75x – 1000 = 0 7. Dùng các phương pháp có thể để tìm nghiệm gần đúng cho phương trình sau: cos2x + x – 5 = 0 8. Viết chương trình tìm nghiệm cho có dạng tổng quát: f(x) = a 0 x n + a 1 x n-1 + … + a n-1 x + a n = 0 a. Áp dụng phương pháp chia đôi b. Áp dụng phương pháp dây cung 9. Viết chương trình tìm nghiệm cho phương trình e x – 10x + 7 = 0 bằng phương pháp tiếp tuyến. 10. Viết chương trình xác định giá trị x 1 , x 2 theo định lý 3. 11. Viết chương trình tìm cận trên của nghiệm dương phương trình đại số theo định lý 4. 26 CHƯƠNG V GIẢI HỆ PHƯƠNG TRÌNH ĐẠI SỐ TUYẾN TÍNH 5.1. Giới thiệu Cho hệ phương trình tuyến tính: a 11 x 1 + a 12 x 2 + + a 1n x n = a 1n+1 a 21 x 1 + a 22 x 2 + + a 2n x n = a 2n+1 … … a n1 x 1 + a n2 x 2 + + a nn x n = a nn+1 Hệ phương trình trên có thể được cho bởi ma trận: a 11 a 12 a 1n a 1n+1 a 21 a 22 a 2n a 2n+1 A nn+1 = a n1 a n2 a nn a nn+1 Vấn đề: Tìm vectơ nghiệm )x, ,x,x(x n21 = * Phương pháp: - Phương pháp đúng (Krame, Gauss, khai căn): Đặc điểm của các phương pháp này là sau một số hữu hạn các bước tính, ta nhận được nghiệm đúng nếu trong quá trình tính toán không làm tròn số - Phương pháp gần đúng (Gauss Siedel, giảm dư): Thông thường ta cho ẩn số một giá trị ban đầu, từ giá trị này tính giá trị nghiệm gần đúng tốt hơn theo một qui tắc nào đó. Quá trình này được lặp lại nhiều lần và với mộ t số điều kiện nhất định, ta nhận được nghiệm gần đúng. 5.2. Phương pháp Krame - Khai báo hàm Dt tính định thức ma trận vuông cấp n - Nhập n, a ij (i = 1n,1j;n,1 += ) - d = Dt (A) - Xét + d = 0 + d # 0 {d i = Dt(A i ) ; x i = d i /d } 27 5.3. Phương pháp Gauss 5.3.1. Nội dung phương pháp - Biến đổi Ma trận A về ma trận tam giác trên a 11 a 12 a 1n a 1n+1 a 21 a 22 a 2n a 2n+1 A = a n1 a n2 a nn a nn+1 a 11 a 12 a 1n a 1n+1 0 a' 22 a' 2n a' 2n+1 → A= 0 0 a' nn a' nn+1 Cách biến đổi A → A’: Thực hiện n-1 lần biến đổi Lần biến đổi i (làm cho a ji = 0; j = i + 1 → n) bằng cách: dòng j = dòng j + dòng i * m (m = -a ji / a ij ) - Tìm nghiệm theo quá trình ngược: x n → n n-1 → → x 1 Ví dụ 1. Giải hệ phương trình 1 2 -1 3 5 1 2 -1 3 5 -2 X 2 1 0 -1 2 → 0 -3 2 -7 -8 1 X -1 3 2 4 8 5/3 0 5 1 7 13 1 X -2 0 5 1 4 4/3 0 4 3 7 14 1 2 -1 3 5 1 2 -1 3 5 0 -3 2 -7 -8 0 -3 2 -7 -8 0 0 13/3 -14/3 -1/3 0 0 13/3 -14/3 -1/3 13 17− 0 0 17/3 -7/3 10/3 → 0 0 0 49/13 49/13 ⇒ x 4 = 1; x 3 = 1; x 2 = 1; x 1 = 1 Vậy nghiệm hệ phương trình )1,1,1,1(x = 5.3.2. Thuật toán - Nhập n, a ij ( 1n,1j,n,1i +== ) (nhập trực tiếp hoặc từ file) 28 - Biến đổi A → A’ (ma trận tam giác trên) Lặp i = 1 → n -1 Tìm j sao cho a ji # 0 + Xét a ij = 0 → Hoán đổi dòng i và dòng j cho nhau + Lặp j = i + 1 → n • m = -a ij /a ii • Lặp k = i → n +1 a jk = a jk + a ik * m - Tìm nghiệm iij n 1ij ij1ini a/xaax ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ −= ∑ += + ( i =n→ 1) Lặp i = n → 1 • s = 0 • lặp j = i + 1 → n S = S + a ij * x j • xi = (a in+1 - s)/a ii - Xuất x i (i=1→n) 5.4. Phương pháp lặp Gauss - Siedel (tự sửa sai) 5.4.1. Nội dung phương pháp Biến đổi hệ phương trình về dạng: →→→ += gxBx )x, ,x,x(x n21 = → ; )g, ,g,g(g n21 = → ; B = {b ij } n Cách biến đổi: a 11 x 1 +a 12 x 2 + + a 1n x n = a 1n+1 a 21 x 1 +a 22 x 2 + + a 2n x n = a 2n+1 a n1 x 1 +a n2 x 2 + + a nn x n = a nn+1 )1j(a/)xaa(x 11j n 1j j11n1 ≠−= ∑ = + )nj(a/)xaa(x nnj n 1j nj1nnn ≠−= ∑ = + Tổng quát: . -8 1 X -1 3 2 4 8 5/3 0 5 1 7 13 1 X -2 0 5 1 4 4/3 0 4 3 7 14 1 2 -1 3 5 1 2 -1 3 5 0 -3 2 -7 -8 0 -3 2 -7 -8 0 0 13/3 - 14/ 3 -1/3 0 0 13/3 - 14/ 3 -1/3 13 17− . nghiệm âm cho phương trình: x 4 - 3x 2 + 75x – 1000 = 0 7. Dùng các phương pháp có thể để tìm nghiệm gần đúng cho phương trình sau: cos2x + x – 5 = 0 8. Viết chương trình tìm nghiệm cho có. gần đúng các phương trình: a. x 3 – x + 5 = 0 b. x 3 – x – 1 = 0 c. sinx –x + 1 /4 = 0 d. x 4 – 4x – 1= 0 bằng phương pháp chia đôi với sai số không quá 10 -3 2. Tìm nghiệm gần đúng

Ngày đăng: 30/07/2014, 22:22

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan